t=-16t^2+155t+76

Simple and best practice solution for t=-16t^2+155t+76 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t=-16t^2+155t+76 equation:



t=-16t^2+155t+76
We move all terms to the left:
t-(-16t^2+155t+76)=0
We get rid of parentheses
16t^2-155t+t-76=0
We add all the numbers together, and all the variables
16t^2-154t-76=0
a = 16; b = -154; c = -76;
Δ = b2-4ac
Δ = -1542-4·16·(-76)
Δ = 28580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28580}=\sqrt{4*7145}=\sqrt{4}*\sqrt{7145}=2\sqrt{7145}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-154)-2\sqrt{7145}}{2*16}=\frac{154-2\sqrt{7145}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-154)+2\sqrt{7145}}{2*16}=\frac{154+2\sqrt{7145}}{32} $

See similar equations:

| x1=x2=x3 | | 2/5(12y+5)−4/5=1/2y−1+1/10y | | -10=4(x+2)-7x | | 2x-7x=-5-4 | | 19.2=3.4x+2.2 | | 2n-19=-n-4 | | 5(7-4y/7)+9y=78 | | 6x+36=9(x+7) | | 3(5x+10)10=6x-(x+10 | | 10^3x=2 | | 3x+18.50=104.50 | | 10^6x-10^3x=2 | | X^4-5x^2-1=0 | | 7d=5 | | 2(x+2)+30=0 | | X³+3x=17 | | -10x-x=+2/3+1/4 | | 150y+1820=1920 | | 3x+6/8x-x+1/4x+2=20 | | 6(3x+2)/6-7=6x12x/4-5 | | 5b+b+b-2b+2b=14 | | 15v+v+4v=20 | | 6a-4+7a=-20 | | 0.4x+0.5=0.7 | | 9p-p=16 | | 10x^2+48x+54=0 | | 5x-2(2x+1)=3(x-4) | | 4y=6+6y | | Y3(x+4)=3x+4 | | 5x^2+28x-76=0 | | 6/4=m+4/6 | | x-6=136 |

Equations solver categories